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Abstract. The universal equations of state of solids recently proposed by several authors have
been examined by comparing them with the theoretical results calculated by the augmented-
plane-wave method and the quantum-statistical model proposed by Kalitkin and Kuz’mina from
low to ultra-high pressures. It has been shown that the Vinet equation is in good agreement with
the theoretical results both for theP –V relation and for the pressure dependence of the isothermal
bulk modulus up to 10 TPa(V/V0 = 0.20) for monatomic solids and up to 1 TPa(V/V0 = 0.35)
for diatomic solids. The Kumari–Dass and the Dodson equations become less successful below
V/V0 = 0.7 if the zero-pressure values forB0, B

′
0 andB ′′

0 are used. For monatomic solids the
Holzapfel equation has a very similar structure to that of the Vinet equation at low and medium
compressions and it is in good agreement with the theoretical values up to ultra-high pressures.
For the application to polyatomic solids a remedy for the shortcomings of the Vinet equation
at very high pressures is given on the basis of the quantum-statistical model. The resulting
equation is in good agreement with the theoretical values from low to ultra-high pressures both
for monatomic and for diatomic solids.

1. Introduction

The equation of state (EOS) is fundamentally important in studying the high-pressure
properties of solids. Up to now a number of workers have endeavoured to search for a
simple form of the EOS of solids which has a small number of parameters and predicts
correct high-pressure behaviours irrespective of the material. The parameters are determined
by using available low-pressure data such as the volumeV0, the isothermal bulk modulus
B0 and its pressure derivativesB ′

0 and B ′′
0 at zero pressure. Hitherto the Murnaghan [1]

and the Birch [2] equations have been used widely in high-pressure physics and geophysics
to analyse experimental data. These EOSs are, however, derived from the second-order
Taylor series expansion of the bulk modulus or the elastic strain energy with respect
to pressure or strain, so their validities are, in principle, restricted to a narrow range of
compression unless the high-order terms are taken into account. This is why the values of
B0, especially those ofB ′

0 andB ′′
0 obtained from experiments which cover different ranges

of compression by using a fitting method, are usually different. Though present-day first-
principles calculations may predict the EOSs of solid accurately, they are time-consuming
because the calculations have to be done individually for a number of volumes. If we
find a correct form of the EOS, we can predict the high-pressure properties of solids with
a little effort by determining the parameters from theoretical calculations or experimental
data. Furthermore pressure, bulk modulus and its pressure derivatives are estimated usually
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by fitting calculated numerical data to an appropriate equation such as the Birch equation
instead of by numerical differentiation. Therefore the search for a universal form of the
EOS of solids is still an important problem in high-pressure physics and geophysics. In the
following we write out the Murnaghan and the Birch equations for later convenience:

PM = 2(B0/B
′
0)(1 − xη)/[ξ − 1 + (ξ + 1)xη] (1)

with x = (V/V0)
1/3, ξ = (1 − 2B0B

′′
0/B ′2

0 )1/2 andη = 3ξB ′
0, and

PB = (3B0/2)(x−7 − x−5)[1 + (3ξ/4)(x−2 − 1) + (η/2)(x−2 − 1)2] (2)

with ξ = B ′
0 − 4 andη = (3/4)(B0B

′′
0 + B ′2

0 − 7B ′
0 + 143/9). The EOS recently proposed

by Parsafar and Mason (PM) [3]

PPM = (B0/2)
[
(B ′

0 − 7) − 2(B ′
0 − 6)x−3 + (B0 − 5)x−6

]
x−6 (3)

belongs to this category, where the internal energy is expressed via density expansion up
to the cubic term.

An extension of the Murnaghan equation was given by Kumari and Dass (KD) [4, 5]
who took the higher-order terms in the Taylor series expansion into account by using the
assumption thatB(n+1)

0 /B
(n)

0 = −B ′′
0/B ′

0 for n > 1 with B
(n)

0 as thenth-order pressure
derivative of the isothermal bulk modulus at zero pressure. The resulting KD equation is
written as

PKD = −(B ′
0/B

′′
0) ln {[1 + (ξ − 1)xη]/ξ} (4)

with ξ = 1 − B0B
′′
0/B ′2

0 and η = −3B ′
0ξ . On the other hand, assuming a relation

B = [a(V0/V )1/3 − b]2 with a andb as material constants, Dodson [6] obtained

PD = (3/2)3B0B
′2
0 (x−2 − 4ξx−1 − 2ξ2 ln x + 4ξ − 1) (5)

with ξ = 1 − 2/(3B ′
0). Both of these EOSs are, however, based on empirical relations,

so their validities are limited to the ranges within which the empirical relations are
approximately correct. A more fundamental derivation was given by Vinet and co-workers
[7, 8] who assumed the interatomic interaction in solids related mainly to compression to
be expressed by a formA(1 + ar) exp(−br) with A, a and b as material constants, and
derived

PV = 3B0x
−2(1 − x) exp[η(1 − x)] η = (3/2)(B ′

0 − 1). (6)

Recently these EOSs have been shown to be in much better agreement with experimental
data than the previous EOSs given by Murnaghan and by Birch for a number of materials—
metals, dielectrics and ionic solids, etc—if no phase transition is observed, though non-
negligible differences exist between the fitted values ofB0, B

′
0 and B ′′

0 for each of the
EOSs [9]. However, their derivations are quite different from one another, so the high-
pressure behaviours beyond the range of the compression used for fitting may be different.
Moreover, all of these EOSs have a fatal shortcoming in that they do not approach the
correct theoretical values at extreme compressions [10]. Thus there remain some doubts as
to whether all of these EOSs can predict correct pressures beyond the range used for fitting
and whether they predict the high-pressure properties correctly when the real zero-pressure
values are used forB0, B

′
0 andB ′′

0 .
In this paper we shall discuss the validity of the EOSs recently proposed on the basis of

theoretical calculations and propose a new form correct up to ultra-high pressures. We shall
also discuss the temperature effect on the EOS and compare several isobars of MgSiO3 with
experimental data.
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2. Comparison of the EOSs with theoretical results

In this section we shall compare the EOSs mentioned in section 1 with the theoretical results
calculated by the augmented-plane-wave (APW) method [11] and by the quantum-statistical
model (QSM) [12]. The latter, in which both the gradient correction to the kinetic energy
and the exchange energy are included, gives the correct values at extreme compressions.
The APW result tends, of course, to the QSM result at extreme compressions where the
difference between theP –V relations for the crystal structures is negligibly small. Though
the temperature effect on the EOS may be taken into account approximately by using the
Debye model, which will be discussed in section 5, we shall restrict ourselves to the EOS in
the static lattice in this section for the sake of definiteness and simplicity in the comparison.
The theoretical values ofB0, B

′
0 and B ′′

0 are determined from the calculated pressures at
aboutV/V0 = 1.05−0.85 with V0 as the calculated zero-pressure volume. In the following
we shall call the solids with one (two) atom(s) in the unit cell monatomic (diatomic) solids.

Table 1. The theoretical values ofV0 (au), B0 (GPa),B ′
0 and B ′′

0 (GPa−1), and the values of
ζ in equation (20) determined by the QSM and the values ofB ′′

0 calculated from equation (20)
which are expressed as [B ′′

0 ].

Material V0 B0 B ′
0 B ′′

0 ζ [B ′′
0 ]

Ne 102.128 6.36 7.61−2.86 −1.385 −2.94
Ar 210.517 6.28 7.07−2.53 −1.414 −2.62
Al 109.600 72.6 4.85−0.104 0.253 −0.105
Cu 78.137 135 5.93−0.083 0.191 −0.082
LiH 101.947 39.1 3.51−0.106 1.417 −0.086
MgO 123.747 157 4.37−0.040 1.101 −0.036

In figure 1 pressure is plotted as a function ofV/V0 for monatomic solids. We
select here four kinds of solid:(a) a typical sp metal Al(fcc) [14, 15],(b) a rare-gas
metal Cu(bcc) [15, 16],(c) a substance which is the most difficult to metallize Ne(fcc)
[13, 17] and(d) a large-gap insulator with a small bulk modulus Ar(fcc) [13]. In the figure
PM, PB, PPM, PKD, PD andPV are also plotted. The theoretical values ofV0, B0, B

′
0 andB ′′

0
are tabulated in table 1. The figure shows that the Vinet equation is accurate up to about
V/V0 = 0.2–0.3 or up to about 10 TPa in pressure. On the other hand the Dodson, the
KD and the Murnaghan equations deviate substantially from the theoretical EOSs for about
V/V0 > 0.7. It is interesting to note that the Birch equation is unexpectedly accurate up
to aboutV/V0 = 0.40: the sudden breakdown of the Birch equation at large compressions
for metals (Cu, Al) results fromη in equation (2) being negative for these substances in
contrast to the rare-gas solids. The PM equation is very similar to the Birch equation,
but it becomes less successful for aboutV/V0 < 0.65. Similar behaviours are found for
B/B0 and1E (see section 3). In figure 2 similar plots are given for diatomic solids with a
small bulk moduli,(a), LiH (B1) [11, 18]; and those with a large bulk modulus,(b), MgO
(B1) [15]. The theoretical values ofV0, B0, B

′
0 and B ′′

0 are listed in table 1. The figure
shows that the Vinet equation departs from the theoretical pressures at a larger value of
V/V0 for diatomic solids than for monatomic solids, but it is still in good agreement with
theoretical values among the others. The breakdown of the Birch and the PM equations
below aboutV/V0 = 0.35 and 0.65 respectively results from these being derived from
the lower-order Taylor series expansion of the corresponding energies with the respective
expansion variables12[(V0/V )2/3 − 1] and (V0/V ) − 1: the density expansion converges
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Figure 1. A comparison of theP –V curves of several EOSs with the theoretical results for
monatomic solids.(a) Al, (b) Cu, (c) Ne and(d) Ar: solid line: theory;◦: Vinet; �: Birch;
+: Parsafar–Mason;M: Dodson; O: Kumari–Dass;♦: Murnaghan. The parameters of the
EOSs are determined by the theoretical values ofV0, B0, B

′
0 andB ′′

0 .
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more slowly than the strain expansion. Judging from the present results the excellent
agreement of the KD equation with the experimental data reported in [4], [5] and [9] seems
fortuitous, though it may achieve good fitting if the parametersB0, B

′
0 andB ′′

0 are adjusted
by a fitting method. However, it is difficult to get a fitting beyond aboutV/V0 = 0.5.
The shortcoming of the KD equation at high pressures is easily understood from the fact
that the bulk modulus of the KD equation approaches a constant,B0 − B ′2

0 /B ′′
0 , in the limit

of extreme compressions contrary to the theoretical prediction (see figure 2). The Dodson
equation is in moderate agreement with the theoretical results for monatomic metals, but
large deviations are found for easily compressible solids at low pressures. As for diatomic
solids, however, the agreement is moderate both for LiH and MgO. According to the spirit
of a universal EOS it is desirable thatB0, B

′
0 andB ′′

0 are not adjustable parameters but the
real values at zero pressure. Therefore the KD and the Dodson equations do not have the
desired characteristics of a universal EOS.

Figure 2. A comparison of theP –V curves of several EOSs with the theoretical results for
diatomic solids.(a) LiH and (b) MgO: solid line: theory;◦: Vinet; �: Birch; +: Parsafar–
Mason; M: Dodson; O: Kumari–Dass;♦: Murnaghan. The parameters of the EOSs are
determined by the theoretical values ofV0, B0, B

′
0 andB ′′

0 .

The EOSs mentioned in section 1 can be classified into three categories:

(a) the derivative form (Birch, PM and Vinet equations):

P = −∂E/∂V

(b) the volume-integral form (the Dodson equation):

P = −
∫ V

V0

B(V )

V
dV
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(c) the pressure-integral form (Murnaghan and KD equations):

V

V0
= exp

[
−

∫ P

0

dP

B(P )

]
with E as the total energy of a solid.

It is interesting to note that the derivative form is much better than the integral forms:
the error at large compressions is much more exaggerated in the integral forms than in
the derivative forms. The inadequacy of the Murnaghan and the KD equations at high
pressures results from the error inB(P ) being enhanced greatly due to the exponential
form. Therefore a more accurate estimate forB is required in the pressure-integral form:
the pressure expansion ofB becomes much less successful at large compressions than the
(V0/V )1/3-expansion ofB because pressure is not an adequate expansion variable except
for at low pressures. The bulk moduli,B(P ), approximated by the Murnaghan and the
KD equations become less good at lower pressures than the other EOSs for every material
investigated in the present paper if the real values are used forB0, B

′
0 andB ′′

0 (see figure 3).

3. The bulk modulus and total energy

From the EOSs mentioned in section 1 we can derive the expressions for the bulk modulus
and the total energy. It is interesting to investigate how accurately these EOSs predict these
quantities at high pressures. Their expressions for the bulk modulus are given as follows:

BM/B0 = {2ξ/[ξ − 1 + (ξ + 1)xη]}2
xη (7)

BB/B0 = (1/2)(7x−7 − 5x−5)[1 + (3/4)ξ(x−2 − 1) + (η/2)(x−2 − 1)2

+ (x−9 − x−7)[(3/2)ξ + 2η(x−2 − 1)] (8)

BKD/B0 = ξ/(ξ − 1 + xη) (9)

BD/B0 = [1 + 3B ′
0(1 − x)/(2x)]2 (10)

BV/B0 = x−2[1 + (ηx + 1)(1 − x)] exp[η(1 − x)] (11)

where ξ and η are the same as those given in the corresponding equations, (1)–(6). In
figure 3 the ratioB/B0 is plotted as a function of pressure for(a) Cu, (b) Ar and (c) MgO.
The figure shows that the Vinet equation is supreme among the others and predicts both
the pressure and the bulk modulus correctly up to 10 TPa for monatomic solids and up to
1 TPa for diatomic solids. The superiority of the Vinet equation is shown by Schlosser and
Ferrante [19] by comparing various EOSs forB/B0 with experimental data. The present
result confirms that this characteristic persists up to very high pressures. The estimate of
the values ofB ′

0 andB ′′
0 may be not so accurate in comparison with that ofB0, so there is a

possibility that the agreement of the Dodson equation may be improved with a slight change
of the value ofB ′

0. Therefore we tried to fit the theoretical values ofB/B0 to equation
(10) by changing the ranges for the fitting:(a) V/V0 > 0.50 and(b) V/V0 > 0.10. The
resulting values ofB ′

0(fit.)/B ′
0(theoret.) are as follows for Ne, Ar, Al, Cu, LiH and MgO,

respectively:(a) 1.41, 1.33, 1.19, 1.29, 1.17, 1.20,(b) 3.08, 2.58, 1.93, 2.49, 1.83, 2.03.
The values seem to be large even forV/V0 > 0.50. For the Dodson equation to achieve
good fitting both for theP –V relation and the pressure dependence of the bulk modulus is
difficult even forV/V0 > 0.50. The inadequacy of the Dodson equation at high pressures
is attributed to the convergence of the(V0/V )1/3-expansion being slower than that of the
strain or the density expansions. The Dodson equation is still less successful than the Birch
and the PM equations even if the correct quadratic term is included in the expansion.
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Figure 3. A comparison of the isothermal bulk modulus versus pressure curves of several EOSs
with the theoretical result.(a) Cu, (b) Ar and (c) MgO: solid line: theory;◦: Vinet; �: Birch;
M: Dodson;O: Kumari–Dass;♦: Murnaghan. The parameters of the EOSs are determined by
the theoretical values ofV0, B0, B

′
0 andB ′′

0 .
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Figure 4. A comparison of the volume dependence
of the total energy,1E/(B0V0) , of several EOSs
with the theoretical result for Ne: solid line: theory;◦: Vinet; �: Birch; M: Dodson;O: Kumari–Dass;
♦: Murnaghan. The parameters of the EOSs are
determined by the theoretical values ofV0, B0, B

′
0

andB ′′
0 .

The total energy relative to the cohesive energy1E = E(V )−E(V0) for these equations
can be written as

1EM = 6B0V0

B ′
0

∫ 1

x

(1 − tη)t2

(ξ − 1) + (ξ + 1)tη
dt (12)

1EB = 9

8
B0V0(x

−2 − 1)2

[
1 + ξ

2
(x−2 − 1) + η

4
(x−2 − 1)2

]
(13)

1EKD = B ′
0V0

B ′′
0

{
(1 − x3) ln ξ − 3

∫ 1

x

ln
[
1 + (ξ − 1)tη

]
t2 dt

}
(14)

1ED = 9

4
B0V0B

′2
0

[
(ξ2 − 3ξ + 3) − 9

2
x + 9ξx2 − 3

2
(4ξ − 1)x3 + ξ2(3 lnx − 1)x3

]
(15)

1EV = 9B0V0

η2
{1 − [1 − η(1 − x)] exp[η(1 − x)]} . (16)

In figure 4 we compare these results with the theoretical values for Ne(fcc). The figure
shows that the agreement is excellent for the Vinet equation. This manifests the fact that
the Vinet form for the total energy is very accurate other than for very small compressions
for a solid constituted by closed-shell atoms as is expected.

4. Behaviours at very high pressures

As was shown in sections 2 and 3, overall agreement of theP –V relation andB(P ) of
the Vinet equation with theoretical results is excellent below about 1 TPa which seems to
exceed the pressure range usually used. However, the Vinet equation and all of the other
EOSs previously proposed do not describe the high-pressure behaviours predicted by the
QSM. The inadequacy of the Vinet equation can be understood easily from equation (16)
in which the total energy tends to a constant, 9B0V0/η

2[1 − (1 − η) exp(η)], in the limit
of extreme compression, instead of infinity, contrary to theoretical prediction. Recently
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Holzapfel [10] analysed the experimental data on monatomic solids and proposed several
EOSs applicable to monatomic solids which tend to the Thomas–Fermi values at strong
compressions. Among these the EOSs called H11 and H12 are written as [20]

PH11 = PFG0x
−5(1 − x) exp(−c0x) (17)

PH12 = 3B0x
−5(1 − x) exp[(c0 + c2)(1 − x) − c2(1 − x)2]. (18)

Here c0 = ln(PTF0/(3B0)), c2 = (3B ′
0 − 2c0 − 9)/2 andPTF0 denotes the Thomas–Fermi

pressure atV = V0 given by (1/5)(3π2)2/3(h̄/me)(Z/V0)
5/3 with Z as the atomic number

of the constituent atom. Recently the H11 equation was compared with DAC data and the
room-temperature isotherm deduced from Hugoniot data up to 1 TPa for Al [21] where
good agreement was shown with the use of the experimentalB0. Though the H11 equation
is certainly in good agreement with the theoretical result for Al, large deviations are found
for rare-gas solids. On the other hand the H12 equation can be written approximately
as PH12/PV ∼ exp[(−c2 + 3/2)(1 − x)2] for (1 − x)3 � 1. For Ne, Ar, Al and Cu
the values of−c2 + 3/2 are estimated, respectively, to be−1.30, −0.70, 0.73 and 0.39.
Therefore the H12 equation is very similar to the Vinet equation at low and medium
compressions. Since the H12 equation is very similar to the simple form given by Thomas
and Fermi in which only the kinetic energy contribution to pressure is included, its validity
at less strong compressions, where the exchange contribution is not negligible, needs to
be investigated. The present calculation shows that the agreement is excellent even in this
range of compression because the reduction factor,(1−x) exp[(c2 −c0)x −c2x

2], simulates
the negative pressure due to the exchange energy very well in this equation. The Thomas–
Fermi EOS becomes poor rapidly at smaller compressions for a material which has a small
number of conduction electrons. We compare in figure 5 the H11 and H12 equations with
the theoretical result for the case of Ne.

Figure 5. A comparison of theP –V curves for the H11,
H12 and Vinet equations with the theoretical result for
Ne: solid line: theory;M: H11; �: H12; and◦: Vinet.
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Figure 6. ln H(x) versus(1 − x) relations for(a) monatomic solids and(b) diatomic solids.
The solid line and the circles denote, respectively, the theoretical values and those obtained from
equation (20).

Since the H12 equation is applicable only to monatomic solids, we shall improve the
Vinet equation on the basis of the QSM in the following. Following Vinetet al, let us
introduce a quantityH(x) = x2P/[3(1 − x)]. For the Vinet equation lnH is expressed in
terms of a linear function of(1−x), as lnH = ln B0+η(1−x). In figure 6 lnH versus(1−x)

is plotted. The figure shows that the linear relation holds up tox = 0.6 (V/V0 = 0.22)
for monatomic solids and up tox = 0.8 (V/V0 = 0.51) for diatomic solids. As for Ne the
linearity holds well up tox = 0.4 (V/V0 = 0.064). Figure 6 demonstrates the usefulness
and the limit of applicability of the Vinet equation. For aboutx < 0.3 (V/V0 < 0.027) the
QSM result becomes correct irrespective of the crystal structures and depends only upon
the material. The solution of the QSM equation for monatomic solids is expressed in a very
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convenient form by Kalitkin and Kuz’mina [12]; this is reproduced in the appendix. For
polyatomic solids the QSM pressure and volume are calculated by using the relation of the
addition of volumes at equal pressure. From the QSM solution given in the appendix we
can express lnH approximately as−3 lnx + a0 + a1x + a2x

2 for (1− x)3 � 1. Combining
this form with the Vinet equation, we adopt the following simple form for lnH :

ln H = ln B0 + η(1 − x) + ζ(1 − x)2 − 3[ln x + 1 − x + (1 − x)2/2] (19)

whereB0 and η are the same as those of the Vinet equation andζ is determined by the
QSM results. The corresponding EOS is given by

P = 3B0x
−5(1 − x) exp[(η − 3)(1 − x) + (ζ − 3/2)(1 − x)2]. (20)

In figure 6 the values of lnH obtained from equation (19) are compared with the theoretical
results whereζ is determined by the QSM result atx = 0.20. The figure shows that the
value obtained from equation (19) is in good agreement with the theoretical one for both
monatomic and diatomic solids from small to extreme compressions. In table 1 the values
of ζ are tabulated. It should be noted that the parameters,ζ , newly introduced in equation
(20) can be determined theoretically independently of the crystal structure considered. For
equation (20)B ′′

0 is expressed as−(η2 + 6η − 6ζ + 2)/(9B0). The calculated values are in
good agreement with the theoretical ones (see table 1). However, it is not a good idea to
estimate the value ofζ from the above relation because that requires a precise estimate of
B ′′

0 . For (1 − x)3 � 1 equation (20) reduces to the equation proposed by Sikka [22, 23].

5. The temperature effect on the EOS

For a weakly bounded solid such as a rare-gas solid the temperature effect is important
at low pressures [13], and even for ionic solids its inclusion improves the agreement of
the theoretical results with experimental ones [24]. In this section we shall show briefly
that the Vinet equation is in good agreement with the theoretical result up to very high
pressure even if the temperature effect is taken into account by using the Debye model for
lattice vibration. For the sake of simplicity we restrict ourselves to monatomic solids in the
following. We express the pressure as

PT = Ps + 9

8
nkB

γ2D

V
+ 3nkBT

γ

V
D

(
2D

T

)
(21)

wherePs, 2D, n and γ denote, respectively, the pressure in the static lattice, the Debye
temperature, the number of atoms in the unit cell and the thermodynamic Grüneisen
parameter which is expressed in the Debye model as−(∂ ln 2D/∂ ln V )T . Also D(x) is
the well-known Debye function. The pressure due to the thermal excitation of electrons is
added toPs if necessary [25]. The volume dependence of2D can be estimated as follows:

2D = h̄

kB

[
5

3

〈
ω2

〉]1/2

(22)

〈
ω2

〉 = 1

3N

∑
k,α

Dαα(k) = 1

3M

∑
R

′ [∇2φ(r)
]
r=R

(23)

where
〈
ω2

〉
is the mean square vibration frequency,Dαα(k) is a component of the dynamical

matrix with α = x, y, z, φ(r) is the interatomic pair potential,M is the mass of the
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constituent atom andR is a lattice vector. When we estimate the force constant at the
nearest-neighbour distanced, we get [11, 13]

2D(V ) = h̄

kBd

(
5V

M

)1/2 (
Bs − 4

3
Ps

)1/2

(24)

from equations (22) and (23) whereBs is the bulk modulus in the static lattice. Thus the
Grüneisen parameter is expressed as

γ (V ) = −4Ps + 24V P ′
s + 9V 2P ′′

s

6(4Ps + 3V P ′
s)

(25)

with the primes onP ′
s and P ′′

s denoting the volume derivatives (equation (31) in [11] is
misprinted). Equation (25) is equivalent toγ given by Zubarev and Vaschchenko. For the
Vinet equation equations (24) and (25) are written as

2D = 20 exp[η(1 − x)/2][−ηx + (η + 3) − 2/x]1/2 (26)

γ = [η2x3 − (η2 + 4η)x2 + 2ηx + 2]/(6[ηx2 − (η + 3)x + 2]) (27)

where 20 = 2D(V0). In figure 7 we plot lnH as a function of(1 − x) for neon at
room temperature together with the result in the static lattice and compare these results
with the experimental data [26, 27] where the experimental value at ambient pressure at
room temperature is used forV0. The figure shows that the linearity holds well at least
up to x = 0.40 (V/V0 = 0.064) even if the temperature effect is taken into account.
The deviation of the experimental data from linearity at the smaller end of(1 − x) results
from the solid–liquid transition. Therefore the Vinet form is effectively satisfied at finite
temperatures when the finite-temperature values ofV0, B0 andB ′

0 are used. This is used in
the finite-temperature extension of the Vinet equation [28]

P(V, T ) = PV(V , TR) + α0(TR)B0(TR)(T − TR) (28)

where the thermal expansion coefficientα and the bulk modulusB are estimated at zero
pressure andTR (> 2D) is a reference temperature. Equation (21) reduces to the above
equation whenT > 2D, but equation (21) includes the volume dependences ofα andB.

For an application to polyatomic solids20 is given approximately by equation (24) with
the replacement ofd and 1/M by the atomic radius and the averaged value respectively.
However, the theoretical value of20 may be different from the experimental value. In
practice, we adopt

2D(V ) = 20(V/V0)
1/6Bs(V0)

−1/2[Bs(V ) − (4/3)Ps(V )]1/2 (29)

for polyatomic solids with the use of an experimental value for20. Equation (29) can be
derived also from the Zubarev and Vaschchenko model usingγ = −(∂ ln 2D/∂ ln V )T . In
figure 8 we plot several isobars of MgSiO3 (perovskite) whose high-temperature and high-
pressure properties have important implications as regards the composition of the lower
mantle of the Earth. The theoretical values (static lattice) ofV0, B0 andB ′

0 are taken from
[29]: V0 = 40.25 Å3, B0 = 272 GPa,B ′

0 = 3.80 and for20 the experimental value
of 1030 K is used. The figure shows that the present result is in good agreement with
experimental data [30, 32, 33] except for whenP = 36 GPa [34]. The disagreement at
P = 36 GPa may be attributed to a large uncertainty in temperature which amounts to 250 K
at T = 1900 K. For an application of the present model and the Hugoniot one with the use
of the APW result to the total energy and pressure in the static lattice, a good agreement
with experimental Hugoniot results is reported [11, 24]. Therefore it is reasonable to assume
that the present model with the use of the Vinet equation can predict the high-pressure and
high-temperature properties of solid quantitatively.
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Figure 7. The effect of temperature on lnH(x) versus(1 − x) for Ne. The open and closed
circles denote, respectively, the theoretical result in the static lattice and that at room temperature.
Experimental data are taken from (�) [26] and (M) [27], both for room temperature. The lines
are guides to the eye.

Figure 8. Several isobars of perovskite MgSiO3. V denotes the volume of the unit cell and
pressureP is measured in units of GPa. The experimental data are taken from (◦) [30], (M)
[31], (O) [34], (+) [32], and for P = 25 GPa [33]� and ♦ denote the data which were
determined by using the Au and MgO pressure markers respectively.

6. Discussion and conclusion

In the present paper we compared the universal EOSs of solid with theoretical values from
low to ultra-high pressures. The present result shows that the Vinet equation is in better
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agreement with the theoretical results than the KD and the Dodson equations for both the
P –V relation and the pressure dependence of the isothermal bulk modulus, but it deviates
from the theoretical values above 10 TPa for monatomic solids and from 1 TPa for diatomic
solids. This indicates that at low and medium compressions the repulsive interaction,
A(1 + ar) exp(−br), plays an important role for theP –V relation even for metals, and
that at strong compressions a large number of conduction electrons due to metallization
provide a main source for pressure. This observation conforms to the fact that neon, which
is considered to be the most difficult substance to metallize (the estimated pressure of
metallization amounts to 158 TPa [17]), obeys the Vinet equation well up to an ultra-high
pressure. As for monatomic solids, the H12 equation is one of the simplest interpolation
formulae from low to ultra-high pressures because it reduces to the Vinet equation when
(1 − x) is small and approaches the Thomas–Fermi values at strong compressions. The
good agreement of the H11 equation for Al results from the fact that values ofc2 in
equation (18) are small for this substance. The estimated values ofc2 are 2.798, 2.201,
0.773 and 1.112, respectively, for Ne, Ar, Al and Cu. The Birch and the PM equations
may be accurate in a limited range of compression because they involve no approximation
except the truncation of the expansion series, but their validities are limited approximately
to (1/2)[(V0/V )2/3 − 1] < 1/2 and(V0/V ) − 1 < 1/2, respectively; for the PM equation
a further improvement is not expected so much even if the quartic term is included in the
expansion. The present result show also that the use of a fitting method is indispensable
for the KD and the Dodson equations in order to get a good agreement with experimental
data, but their application ranges may not exceedV/V0 = 0.5.

In order to search for the EOS of polyatomic solids correct at very high pressures, we
have improved the Vinet equation at very high pressures on the basis of a quantum-statistical
model where the parameters newly introduced can be determined theoretically irrespective
of the crystal structure considered. The resulting equation is in good agreement with the
theoretical result from low to ultra-high pressures for monatomic and diatomic solids. For
monatomic solids equation (20) is equivalent to H12 ifζ − 3/2 = −c2 is assumed: the
values ofζ − 3/2(−c2) are estimated to be−2.885 (−2.798),−2.914 (−2.201),−1.247
(−0.773) and−1.309 (−1.112) for Ne, Ar, Al and Cu, respectively. Thus equation (20) is
an extension of H12 for polyatomic solids. Since the Vinet equation is accurate forP and
1E, the present model applicable to the calculation of the the Hugoniot values for solids on
using the Rankine–Hugoniot conservation relation which reduces the computational effort
greatly. The input parameters areV0, B0, B

′
0 and20.
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Appendix

Here we reproduce the analytically fitted electronic densityρ(r) of the QSM solutions for a
monatomic solid given by Kalitkin and Kuz’mina [12], wherer denotes the atomic radius.
All the quantities given below are measured in atomic units.

ρ(r) = (Z/V ) exp(−αr − βr2)

α = 0.1935Z0.495−0.039 log(Z)
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β = 0.068+ [0.078− 0.086 log(Z)] log(Z)

whereZ is the atomic number of the constituent atom, log means log10 andV = (4π/3)r3.
The pressure is calculated from

P = 1

5

[
3π2

]2/3
ρ5/3 − 13

36

[
3

π

]1/3

ρ4/3.
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